non-abelian, supersoluble, monomial
Aliases: C34⋊7S3, C3≀C3⋊1S3, He3⋊2(C3⋊S3), C3⋊(C33⋊S3), C33⋊6(C3⋊S3), (C3×He3)⋊15S3, C3.3(He3⋊5S3), 3- 1+2⋊1(C3⋊S3), (C3×3- 1+2)⋊10S3, C32.1(C33⋊C2), C32.27(He3⋊C2), (C3×C3≀C3)⋊2C2, SmallGroup(486,185)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C3≀C3 — C34⋊7S3 |
Generators and relations for C34⋊7S3
G = < a,b,c,d,e,f | a3=b3=c3=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, faf=a-1, ebe-1=bc=cb, bd=db, fbf=b-1, ece-1=cd=dc, fcf=cd-1, de=ed, fdf=d-1, fef=e-1 >
Subgroups: 1978 in 207 conjugacy classes, 35 normal (9 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, He3, He3, 3- 1+2, 3- 1+2, C33, C33, C33, C32⋊C6, C9⋊C6, C9⋊S3, C3×C3⋊S3, C33⋊C2, C3≀C3, C3×He3, C3×3- 1+2, C34, C33⋊S3, He3⋊4S3, C33.S3, C3×C33⋊C2, C3×C3≀C3, C34⋊7S3
Quotients: C1, C2, S3, C3⋊S3, He3⋊C2, C33⋊C2, C33⋊S3, He3⋊5S3, C34⋊7S3
Character table of C34⋊7S3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 3O | 3P | 3Q | 3R | 3S | 3T | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | |
size | 1 | 81 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 81 | 81 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | 2 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | 2 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | 2 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ14 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | orthogonal lifted from S3 |
ρ16 | 3 | 1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ17 | 3 | -1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | -1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | 1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 3 | -3 | 0 | -3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ21 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | -3 | 0 | -3 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ22 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 3 | 0 | 0 | -3 | 3 | -3 | 3 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ23 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ24 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | -3 | 0 | 3 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ25 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | -3 | -3 | 3 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ26 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 3 | 3 | 0 | 0 | -3 | -3 | 0 | 0 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ27 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | -3 | 3 | 0 | 0 | -3 | 0 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ28 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 3 | 0 | 3 | 0 | -3 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ29 | 6 | 0 | 6 | -3 | -3 | -3 | -3-3√-3 | -3+3√-3 | 0 | 0 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊5S3 |
ρ30 | 6 | 0 | 6 | -3 | -3 | -3 | -3+3√-3 | -3-3√-3 | 0 | 0 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊5S3 |
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 8 26)(2 9 27)(3 7 25)(4 19 23)(5 20 24)(6 21 22)(10 18 15)(11 16 13)(12 17 14)
(1 8 26)(2 9 27)(3 7 25)(4 19 23)(5 20 24)(6 21 22)
(1 26 8)(2 27 9)(3 25 7)(4 19 23)(5 20 24)(6 21 22)(10 18 15)(11 16 13)(12 17 14)
(1 14 6)(2 15 4)(3 13 5)(7 16 24)(8 17 22)(9 18 23)(10 19 27)(11 20 25)(12 21 26)
(2 3)(4 13)(5 15)(6 14)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(16 19)(17 21)(18 20)
G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,8,26)(2,9,27)(3,7,25)(4,19,23)(5,20,24)(6,21,22)(10,18,15)(11,16,13)(12,17,14), (1,8,26)(2,9,27)(3,7,25)(4,19,23)(5,20,24)(6,21,22), (1,26,8)(2,27,9)(3,25,7)(4,19,23)(5,20,24)(6,21,22)(10,18,15)(11,16,13)(12,17,14), (1,14,6)(2,15,4)(3,13,5)(7,16,24)(8,17,22)(9,18,23)(10,19,27)(11,20,25)(12,21,26), (2,3)(4,13)(5,15)(6,14)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(16,19)(17,21)(18,20)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,8,26)(2,9,27)(3,7,25)(4,19,23)(5,20,24)(6,21,22)(10,18,15)(11,16,13)(12,17,14), (1,8,26)(2,9,27)(3,7,25)(4,19,23)(5,20,24)(6,21,22), (1,26,8)(2,27,9)(3,25,7)(4,19,23)(5,20,24)(6,21,22)(10,18,15)(11,16,13)(12,17,14), (1,14,6)(2,15,4)(3,13,5)(7,16,24)(8,17,22)(9,18,23)(10,19,27)(11,20,25)(12,21,26), (2,3)(4,13)(5,15)(6,14)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(16,19)(17,21)(18,20) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,8,26),(2,9,27),(3,7,25),(4,19,23),(5,20,24),(6,21,22),(10,18,15),(11,16,13),(12,17,14)], [(1,8,26),(2,9,27),(3,7,25),(4,19,23),(5,20,24),(6,21,22)], [(1,26,8),(2,27,9),(3,25,7),(4,19,23),(5,20,24),(6,21,22),(10,18,15),(11,16,13),(12,17,14)], [(1,14,6),(2,15,4),(3,13,5),(7,16,24),(8,17,22),(9,18,23),(10,19,27),(11,20,25),(12,21,26)], [(2,3),(4,13),(5,15),(6,14),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(16,19),(17,21),(18,20)]])
G:=TransitiveGroup(27,165);
Matrix representation of C34⋊7S3 ►in GL8(ℤ)
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
G:=sub<GL(8,Integers())| [0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1],[0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1,0,0,0,0,1,0,0,0,0,0,0,0,1,-1,0,0] >;
C34⋊7S3 in GAP, Magma, Sage, TeX
C_3^4\rtimes_7S_3
% in TeX
G:=Group("C3^4:7S3");
// GroupNames label
G:=SmallGroup(486,185);
// by ID
G=gap.SmallGroup(486,185);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,49,218,867,303,11344,1096,11669]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f=a^-1,e*b*e^-1=b*c=c*b,b*d=d*b,f*b*f=b^-1,e*c*e^-1=c*d=d*c,f*c*f=c*d^-1,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations
Export